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MARKOV FORMULATION OF 

ASSESSMENT AND FORECASTING 
CROSS-IMPACT ANALYSIS FOR IMPACT 

James J. Swain, Troy Halverson, 
Frederick A. Rossini, Alan L. Porter, Huaidong Xu * 

INTRODUCTION 

Cross-impact analysis (C-I) is a tool that has been used in systems 
analysis, technology forecasting (Martino, 1983) and technology assess- 
ment (Porter et al., 1980). C-I attempts to determine the impact of the 
occurrence of sets of trends and/or events on other trends and/or events. 

Variations of C-I are widespread; Halverson et al., 1989 and Xu, 1990, 
review these. In its simplest form it consists of a matrix, one dimension 
of which is a set of factors of interest, and the other a set of factors 
that may influence them. Entries in the cells of the matrix are estimated 
by qualitative judgment to indicate the importance of the interactions 
between the elements of the columns and the rows. 

For quantative applications the cells usually contain conditional prob- 
abilities that represent interactions between row and column entries. It is 
generally assumed that conditional probabilities (i.e., the probability of 
El given that E2 occurs) can be estimated more accurately than marginal 
probabilities (i.e., the probability of El ) .  Therefore, several version of C-I 
use the estimates of the conditional probabilities to adjust the marginal 
probabilities. For instance, the marginal probabilities can be adjusted 
using a Monte Carlo simulation (c.f., Enzer and Leschinsky, 1986; Porter, 
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GA 30339; Halverson, Coca-Cola USA, One Coca-Cola Plaza, Atlanta, GA 30301; 
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56 Markov Formulation of Cross-Impact Analysis 

et al., 1980) or in closed form (Halverson et al., 1989). However, the con- 
ditional probabilities are not ordered by their time of occurrence, that  is, 
they are not time-ordered. 

Reitman et al. (1985) presented a technology forecast of A1 (artifi- 
cial intelligence) developments and how three Air Force aims (or targets) 
depended on them. The bottom line of this AIM-TECH forecast was to  
show the relative need for R&D investment in these technologies in rela- 
tion to  development time-lines and the likelihood of achieving the three 
aims. We focus on a few aspects of the AIM-TECH forecast to  illustrate 
c-I .  

One target was to  use A1 and related technologies to  complement pilot 
decisionmaking capabilities in difficult flight situations. One key capabil- 
ity of several needed to fulfill the AIM-TECH pilot/aircrew automation 
scenario entails “Planning Against Adversaries.” This capability depends 
on two other capabilities - a “Common Sense System” and “Analogical 
Reasoning.” AIM-TECH experts estimated: 

1. Probabilities of attaining each of these three capabilities; 

2.  The minimum/maximum time periods required to attain them; and, 

3. The time profile of additional resources required to  accomplish them. 

Investment strategy in light of these aims was then considered. 

In the following example, AIM-TECH information is used purely for 
illustrative purposes. Only a few of the technologies are considered over a 
10-year period, and a number of arbitrary assumptions beyond the AIM- 
TECH data  are made. Consider: 

0 ANA - attaining an A1 system that can reason by analogy (event). 

COM - attaining an A1 system that embodies “common sense” 
(event). 

0 ADV - attaining an A1 system that can plan action against an 
adversary (event). 

ANA, COM, and ADV cannot unoccur - once they have been accom- 
plished. 

D
ow

nl
oa

de
d 

by
 [

75
.9

4.
22

4.
40

] 
at

 1
7:

26
 0

7 
Ju

ly
 2

01
3 



J .  Swain, T. Halverson, F. Rossini, A. Porter, H. Xu 57 

THE TRADITIONAL CROSS-IMPACT GAME 

Input data  for the traditional C-I game consist of expert estimates of 
the probability that certain events occur. We will briefly review these 
data requirements to  establish notation and to  show how these probabili- 
ties are modified in the markov formulation. The occurrence of event i is 
denoted by Ei and its non-occurence by E i .  Three types of information 
are needed for the game: Marginal probabilities - The estimated prob- 
ability that an event occurs, pi  G p(Ei);  Occurence probabilities - the 
estimated conditional probability that an event occurs given that another 
event occurs, pi:j  p(Ei1Ej); and Non-occurence probabilities - the 
estimated conditional probability that an event occurs given that another 
event has not occurred, qi:j 

The notation pi, j  is used as shorthand for the probability of Ei given 
E j ,  while qi:j  is used as the probability of Ei given Ej .  For the AIM- 
TECH 3-event illustration El stands for ANA, Ez stands for COM, and 
E3 represents ADV. 

p(EiIEj). 

In this formulation, the diagonal occurrence probabilities must equal 
100% and the diagonals of the non-occurrence matrix must be 0%. In 
general, the expert will have to provide (2n2 - n )  probability estimates 
to  play the game. The data requirements for estimating non-diagonal 
probabilities may be reduced within each conditional matrix by using the 
following general rule for any two pairs of events: 

This rule provides a way of deriving consistent probabilities on one 
side of the diagonal given the conditional probabilities on the other side. 
Thus, a t  minimum, the expert must enter $n(n - 1) for each conditional 
matrix, or roughly n 2 / 2  probabilities for the whole game. Alternatively, 
all probabilities could be estimated. 

After all are estimated, the C-I game is played using Monte Carlo sim- 
ulation. The occurrence and non-occurrence matrices only specify joint 
probabilities of one event conditional on one other event (called “second- 
order” conditionals). Therefore, to  perform the simulation, additional 
probabilities are required , (e.g., the conditional probability of an event 
occurring given two or more other events). Instead of asking for third 
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58 Markov Formulation of Cross-Impact Analysis 

and higher order contitionals, such as p i : j k  and p i : j k l  which would re- 
quire many difficult, and potentially arbitrary, estimates - it is usually 
assumed that higher order conditionals can be approximated by averaging 
second-order probabilities. That  is, given events 1,. . . ,n: 

. n  
1 

Pi :1, ..., i-l,i+l, ..., ,x - &:j n . .  
3 f *  

A similar averaging is used for higher-order non-occurrence probabilities, 
q i : j k l ,  and probabilities such as p(Ei lEjEk)  x $ ( p i : j  + q i : k ) .  

Time Dependence and Traditional C-I Approaches 

In the form just illustrated, C-I is expressed in terms of time-inde- 
pendent conditional probabilities. For instance, p i , j  says nothing about 
whether one event precedes the other or if they occur simultaneously. 
It merely states the probability of observing Ei given that Ej occurs. 
Thus, the forecast of the C-I game is time-independent. More realistically, 
the analysis should include time-dependence information. Certain events 
may have strong immediate effects that subside with time - e.g., a local 
embargo - while other events take time to be felt - e.g., accumulation of 
debt. In other cases, there may only be a “window of opportunity” for a 
technology to  take hold so that the likelihood of other events would change 
over time as well. The temporal information in Table 1 (based on AIM- 
TECH) is not captured by traditional C-I. For example, the table shows 
that ANA can only occur through 1994, whereas the earliest occurrence 
possible for ADV is 1994. Were one only interested in events from 1995- 
2000, traditional C-I misses the dynamics of this period. 

In place of conditionals like p i : j ,  the C-I game can be restated in 
terms of time-dependent probabilities, like p(Ef+’ lq.), that  incorporate 
both time dependence and ordering by specifying the probability of E; 
at  time t+1, given that Ej has occurred by time t .  This opens up the 
possibility for a richer C-I analysis. 

Analysts have introduced temporal dynamics into various C-I formu- 
lations (Alter, 1979, reviews several approaches). Umpleby (1969) con- 
sidered probabilities as functions of time while Ketchel and Dolan (1976) 
considered cumulative probability distributions over time. Bloom (1977) 
offered a time-dependent model; Enzer and Alter (1978) truncated the 
future into a few time domains and utilized time interval simulation. 
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J. Swain, T .  Halverson, F. Rossini, A. Porter, H. Xu 59 

Table 1: Illustrative Probalistic Forecast of Events ANA, COM, and ADV. 
(Entries are %'s) 

1984 '85 '86 '87 '88 '89 '90 '91 '92 '93 
ANA 0 0 0 0 10 20 31 43 56 70 
COM 0 0 0 0 0 0 0 0 1 6  
ADV 0 0 0 0 0 0 0 0 0 1  

'94 '95 '96 '97 '98 '99 '00 '01 '02 
ANA 85 85 85 85 85 85 85 85 85 
COM 15 28 45 65 65 65 65 65 65 
ADV 1 3 6 9 13 18 24 30 37 

One approach is to truncate the total time period into a small number 
of intermediate periods. Separate C-I matrices then can be constructed 
for each period (Amara, 1972; Martino, forthcoming). The effort required 
is reduced by noting that only certain events are plausible candidates to 
occur in certain time periods. For instance, suppose that the 1984-2002 
period in Table 1 was broken into three periods: 1984-90, 1991-96, and 
1997-2002. In the first period, only ANA is plausible so no conditional 
probabilities are involved. For the second time period, only ANA could 
already have occurred, so one might orchestrate a C-I in which only con- 
ditionals on ANA are considered. Note, as with other CI-formulations, 
there are tough modeling choices - whether to consider "within period" 
cross-impacts. In the third period, ANA is no longer a candidate. 

REFORMULATION OF C-I AS A MARKOV PROCESS 

C-I can be reformulated as a Markov process. Given the mathematical 
tools available for Markov analysis, one may answer a variety of forecast- 
ing questions, including the probabilities (and variances) of events over 
time, sequences of events over time, and expected times of occurrences. 
Howard (1971) provides a general introduction to Markov processes. Ey- 
mard (1977) and Kaya et al. (1979) have explored Markov approaches to 
C-I. We will compare approaches as we develop our Markov model. 

A Markov process is a system of states governed by a matrix of tran- 
sition probabilities. These are the probabilities that the system will go 
from any state Nt = i to some other state Nt+l = j during the next time 
step. Markov analysis assumes that the transition probabilities are only 
dependent on the current state, in other words, the Markov process has 
no memory. For n events, there will be 2" states which define a 2"x2" 
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60 Markov Formulation of Cross-Impact Analysis 

Markov transition matrix. Each of the numbered states represents a dis- 
tinct scenario - a distinct combination of occurrences or non-occurrences 
of the n events. 

The scenario, { E l  . . . En}, is cumbersome to write, so we adopt the fol- 
lowing shorthand notation. Define the vector, X = ( X I  , . . . , Xn), whose 
components are X ;  = I E , ( A ) ,  where A is any scenario and the indicator 
function I( .) is 

X is a vector, one of whose realizations is z = (1 ,0 ,0) ,  which would 
be equivalent t o  A = {ElE2&} and z = (100) for simplicity. The 
states can be numbered arbitrarily or through a function such as N ( X )  = 

Xi2n-i. 

As an example, below is a transition matrix for a system of 3 events. 
For three events there are 23 = 8 states which define an 8 x 8 transition 
matrix. The Markov transition matrix probabilities are represented by 

For example p i ; :  is the probability of going from the state N(010) = 2, 
or ( $ 1 ,  Ez, &} at  time 0, to the state where N(110) = 6, or { E l ,  E2, E3)  

a t  time 1. Note the change in notation in going from C-I to  the Markov 
formalism: pi:j  means the probability of event i given event j ,  while pl:,” 
means the probability of transition t o  state j from state i in a time interval 
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r 

of k. The form of a general %event Markov matrix is: 

(000) 
0 

PO 0 

PI 0 

P2 0 

P3 0 

P4 0 

P5 0 

P6 3 

P7 0 

(001) (010) (011) (100) 
1 2 3 4  

PO I PO 2 PO3 PO4 

P I 1  P lZ  P I 3  P I 4  

P2 1 P 2 2  P 2 3  P 2 4  

P3 1 P32 P33  P34 

P4 I P 4 2  P 4 3  P 4 4  

Ps 1 P S Z  P 5 3  P S 4  

P7 I P72 P 7 3  P74 

PC 1 P6’ P 6 3  P64 

(101) 
5 

PO 5 

PI 5 

PZ 5 

P3 s 
PI 5 

P5 5 

P7 5 

P6 S 

(110) ( I l l )  
6 7 

PO6 PO 7 

P I 6  PI 7 

P26 P? 7 

P36 p3 7 

P46 P47  

P56 P5 7 

P 6 6  p6 7 

P76 P7 7 

Each row contains the probabilities of the system going from state i to  
state j at the next step. Each row must total to  100% because something 
must happen a t  every step even if it is only that the system does not 
change state. The probabilities that the system is unchanged after a tran- 
sition lie on the diagonal where i = j .  The larger these values, the slower 
the system is to  change. These are sometimes called virtual, or internal, 
transitions, while the others are termed real transitions. The probabili- 
ties below the diagonal may be set to zero if events are irreversible (i.e., 
cannot “un-occur”). A Markov matrix for n events will have 2’” state 
transition probabilities. If reversibility is prevented] (2“ - 1)2”/2, proba- 
bilities below the diagonal may be set to  zero. Even with this restriction, 
data requirements can be enormous for a Markov model. For example, 
the specification of a modest 6-event model would require 2” = 4096 
entries for a full Markov matrix and 4096 - (a6 - 1)26/2 = 2080 entries 
if reversibility were prohibited. This greatly exceeds the requirements 
of the traditional C-I described earlier which needed a t  most (271’ - n)  
probability estimates, only 60 estimated probabilities for a six-variable 
game (i.e., the off-diagonal elements of the occurrence and nonoccurrence 
matrices). Thus, while the Markov matrix allows a much richer model, 
the data requirements are great. 
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62 Markov Formulation of Cross-Impact Analysis 

SPECIFYING MARKOV PROBABILITIES 

How can one reduce the number of estimates required so as to make 
a Markovian C-I practical? Two strategies deserve consideration. One 
adapts the traditional C-I framework. Instead of asking for time-inde- 
pendent conditionals, here one asks questions such as, "What is the prob- 
ability of E, at time t + 1, given E, at t?" This gives a probability 
p(Ej '+' lg) .  Alternatively one could ask for the probability of Ej within 
n time periods of Ej. This probability could be used to approximate the 
per-step probability. That is, let pi = p(Ej+"]E:) and use 

so that 

In this way, the expert is only required to give second-order conditional 
probabilities instead of conditionals that are functions of three or more 
events. Now, however, the conditionals are explicitly time-dependent. 
The idea here is to keep the simple structure of the traditional C-I to 
input data. Below are the occurrence and non-occurrence matrices for an 
example two-event, time-dependent model. 

Occurrence Matrix Non-occurence Matrix 

Note that the diagonals of the non-occurrence matrix may be non-zero, 
unlike the original game where it was logically impossible to observe an 
event both occurring and not occurring. These time-dependent diagonal 
probabilities are now the marginal probabilities of an event occurring 
during the next time period. If they are zero, the events can never occur. 
Likewise, non-unity in the occurrence matrix here means that an went  
may un-occur. This structure allows models wherein events can occur, 
un-occur, or reverse. This model requires only 2n more probabilities than 
the traditional C-I game, since the diagonals must now be estimated. 
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J .  Swain, T. Halverson, F. Rossini, A. Porter, H. Xu 63 

The probabilities of event transitions will be used to automatically 
construct the probabilities of state transitions that are used in Markov 
models. These state transition probabilities are of the formp:;f = p ( N t + l  = 
j lNt = i). The state transition probabilities will be approximated by the 
intersection of their constituent event probabilities. That is, 

n 

where 

For example, in a 2-event model, the approximation is 

These probabilities can be computed from the occurrence and non-concurrence 
probabilities using the two relations 

Given this approximation, the Markov state transition matrix P for 
the example 2-event, the dependent model is: 
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64 Markov Formulation of Cross-Impact Analysis 

pf2 X t + l  
2 :I 

x t  Nt = i Nt+l  = j 

1 352.65 .85x.35 ,152.65 .15x.35 
.85z.00 .85x1.0 .15x.00 .15x1.0 
.OOx.65 .OOx.35 1.0x.65 1.02.35 
.oox.oo .OOzl.O 1.ox.00 l.Oxtl.0 

.55 .30 ,098 ,052 

. O O  . O O  .65 

.oo .oo .oo 1.00 

= [ .OO .85 .OO J! ] 
Note that the rows correctly sum to 100% so that this matrix is 

amenable to  Markov analysis. One transition of particular interest oc- 
curs in the bottom row. The 100% probability means that once the sys- 
tem reaches that state, it will stay in it forever. Such a state is called a 
trapping state. A model may have none, one, or several trapping states. 

In this example, eight event transition probabilities were used to  gen- 
erate sixteen state transition probabilities. The technique is even more 
beneficial when more events are to  be modeled. One could still permit the 
expert to  edit the resulting matrix to  reflect specific insights that he or 
she may have (e.g., to  adjust one or more of the transition probabilities.). 

This method does not take into account the non-diagonal probabilities 
from the occurrence and non-occurrence matrices used in the traditional 
C-I analysis. One way to  do this is to  weight the diagonal transitions 
(used above) with these cross-impact terms. For example, in the 2-event 
example used above, equation (4) could be written as: 

where the second term represents the cross-impact terms. Weightings 
other than one half could be used. Equation (4) is easier to  compute, but 
equation (5) considers the cross-impact. 

The approach just described essentially ignores higher-order interac- 
tions among events. It may be worthwhile to  adapt Monte Carlo simu- 
lation to  generate state transition probabilities so that the Markov time- 
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J. Swain, T .  Halverson, F. Rossini, A. Porter, H. Xu 65 

dependent model incorporates higher-order event interactions. For in- 
stance, approximations similar to those used in the traditional C-I anal- 
ysis could be added to  the computation of the transition probabilities. 

The second strategy to reduce the number of estimates required is 
to estimate the state transition probabilities directly. That is, one asks 
the expert to assess the likelihood of transitioning from some given state 
at  time to  each feasible successor state by the t+ l .  Consider the AIM- 
TECH example introduced earlier. Suppose ANA has occurred but COM 
and ADV have not. The expert is then asked to estimate the likelihood 
that at time t+l the system will transition to one of the feasible states: 
ANA only (no change); ANA and COM; or to ANA, COM and ADV. 
This works like Martino's (1983) temporal strategy for a more traditional 
C-I by considering only the more plausible states. It can further simplify 
estimation by assuming constant state transition probabilities for some or 
all time periods. Eymard (1977) used a combined strategy in which event 
occurrence probabilities were estimated for selected prior event combina- 
tions. Kaya et al. (1979) reduced the event set by retaining only those 
events that had the greatest total impact to and from other events. The 
next section addresses state transitions. 
State Transition Probabilities 

The probability that the system will make a transition from any state 
i at time t to any state j after n steps is given by the transition matrix 
p(W, 

(6) p ( t , n )  = p(~J)p(t+lJ). . . p ( t + n - l J )  

In the special case that P = P(til) for all values of 2, P(',") = P", and 
the n-step transition matrix is obtained by multiplying the matrix P by 
itself n times. Using the numbers from the last illustration, the n-step 
transition matrix can be shown to be 

.55" .85" - .55" .98(.65" - .55") 1 - .85" - .98(.65" - .55") 
0 .85" 0 1 - .85" 
0 0  .65" 1 - .65" 
0 0  0 1 

P " =  [ 
For this example, one transition of interest in that from state 0 (no 

events occurred) to state 3 (both events occurred, trapping). The proba- 
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66 Markov Formulation of Cross-Impact Analysis 

Table 2: Illustration of po:3(n) and f0 :3 (~ )  for selected n 

n P0:3(n) f0:3(72) 

0 0  
1 0.052 0.052 
2 0.160 0.108 
3 0.280 0.120 
4 0.393 0.113 
5 0.492 0.099 
6 0.576 0.084 
7 0.646 0.070 
8 0.704 0.058 
9 0.753 0.048 

19 0.954 0.008 
20 0.961 0.007 

. . .  . . .  . . .  

bility of this transition in n-steps is represented by element po:J(n) in the 
above matrix P". In other words, po:3(n) is the probability that we are 
in state 3, n steps after being in state 0. Note that we either may have 
arrived at this state earlier and remained, or just arrived at  state 3 on the 
nth step. We call the latter probability the first passage time, the time to 
first enter a particular state and denote it f!;). The formula for the first 
passage probability for a system with constant transition probabilities, 
pf;? 1.3 , is 

n-1 

f!;' = Pi:j(72) - c f,!:;)pj:j (72 - k) (7) 
k=l 

Table 2 lists the values of these probabilities for several values of n. Note 
that as n becomes large, po:3(n) approaches 1 and f&) approaches 0. 
The values of po:3(n) can be used to determine confidence intervals for 
trapping. For instance, after 5 steps it is almost 50% certain that the 
system will have reached trapping. To be 95% certain of this transition, 
the system would have to make at  least 19 steps. From the table it can be 
seen that, for instance, the system is most likely to make the 0-3 transition 
on the 3rd step, where the probability is 12%. 

The mean number of steps or expected time for this 0-3 transition can 
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J .  Swain, T .  Halverson, F. Rossini, A. Porter, H .  Xu 67 

be calculated from a weighted sum of the first passage probabilities. Let 
Ti:j be the random first passage time from state i to state j .  Its mean is 

a3 

n = l  

For example, summing the first 50 terms of this equation for the p(To:3) 
yields 7.28 - the average number of periods to get from state 0 to state 3 
for the first time. 

Final State 

The probabilities for final states can be found by raising P to some 
large n. In this example, 

0 0 0 1  

lim,,,P" = [ g  g g 
Since all the rows are the same, the final probabilities are independent of 
starting state; after many transitions the system will be in state 3, trap- 
ping, regardless of initial state. If the reversal (unoccurrence) of states 
were allowed, it would have been possible to have a system without trap- 
ping states. The rows of P would still sum to 1 but every probability 
would be less than 1. 

State Holding Time 

Another statistic of interest is the holding time Hi for a recurring state 
i. That is, after entering a state i that has a non-zero virtual transition 
probability, how long can one expect the system to stay in that state? 
The probability that the system will stay in a recurring state n steps 
after entering is given by 

p ( H i  = n)  = (1 - p::J(pfi:i)"-' 

The number of transitions n that a state will "hold" the process in ge- 
ometrically distributed with a parameter that depends only on the pj: i  
probability. The mean and variance of this holding time are given, re- 
spectively, by 
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68 Markov Formulation of Cross-Impact Analysis 

'TZ(H2) = pt:;/(l - p f , i ) z  

For the 2-event example p(Hi),i = 0 , 1 , 2  work out to  be 2.22, 6.67, and 
2.86, respectively, while the variances of the holding times are 2.72, 37.78, 
and 5.31, respectively. 

Scenario Probabilities 

The probabilities of every scenario can be calculated to  find the most 
likely one. Since virtual transitions merely delay the time for the scenar- 
ios, these are eliminated for this calculation. The matrix PR of only real 
transitions is shown below: 

.OO .30 ,098 ,052 

.oo .oo .oo 

.oo .oo .oo 
p R =  [ .oo .oo .oo !i! ] 

When normalized row-by-row so that rows total loo%, this becomes: 

. O O  .66 .22 .12 

.oo .oo .oo 1.0 

.oo .oo .oo .oo 
[ .o .oo .oo 1.0 1 

There are only three possible scenarios for going from state 0 to state 
3 - 0 to  3, 0 to 1 to  3, and 0 to  2 to  3. The probabilities of each trajectory 
are simply the products of the constituent state transition probabilities: 

Trajectory Probability 
0 to  3 .12 = 12% 
0 to 1 to  3 .66x1.0 = 66% 
0 to 2 to 3 .22x1.0 = 22% 

Thus the most likely scenario is the one that starts in state 0, followed 
by states 1 and then 3. This path can be expected to  take 2.22 + 6.67 
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+ 2 = 10.89 steps - that  is, it remains in state 0 for an average of 2 .22  
steps before moving on to  state 1, where it remains for an average of 6.67 
steps, plus the two transitions themselves (0 to  1, 1 to 3) .  

The succession among Markov states may be thought of as a “path 
scenario” which provides future history in which certain events occur, 
followed by other events, as time unfurls. In dealing with any substan- 
tial number of events over several time periods, the probabilities for any 
scenario become vanishingly small. Some C-I programs provide results 
consisting of sets of Monte Carlo simulated event occurrences over time 
(e.g., the XIMPACT program, Enzer and Leschinsky, 1986). The user 
examines these to  infer “likely” scenarios. Mitchel et al. (1977) review 
scenario generation procedures, comparing the use of linear programming, 
mixed-integer linear programming, and simulation to  identify the most 
likely event combinations. Martino and Chen (1978) try cluster analysis 
to  combine relatively similar scenarios to  get a better overall representa- 
tion of likely future patterns. 

Markov analysis can answer a variety of questions about a system. It 
can tell us the expected number of transitions required to  get to any state 
from an initial state (or a distribution of initial states). Probabilities for 
the system to be in a particular state after a given number of transitions 
from another state can be calculated and the expected number of periods 
to  make the transitions, as well the variances of the number of periods 
can be found (Howard, 1971: pp. 201-205). These can be used to  predict 
behavior through the use of confidence intervals, both in terms of states 
and of whole trajectories (i.e. most likely scenarios) over time. The total 
time spent in each state can be calculated, and if there are virtual transi- 
tions, the holding time for those states can be calculated. For most of the 
statistics, the calculations are matrix operations that can be performed 
readily by computers. 

AN ILLUSTRATIVE MARKOV C-I: AIM-TECH 

Figure 1 provides Markov transitions that reproduce the data  from 
Table 1. The probabilities are provided above each state time line, and 
numbers in [ ] represent the state probability a t  each time. Event 3,  ADV, 
can only occur after both Events 1 (ANA) and 2 (COM) have occurred; 
no events can un-occur. Because of the ADV constraint, only 5 of the 
23 = 8 theoretical states are modelled (the other 3 states cannot occur). 
These feasible states are numbered as described in the footnote to  Figure 
1. 
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70 Markov Formulation of Cross-Impact Analysis 

Figure 1: Markov representation of data in Table 1 (Missing entries are 
zero) 

I 
(000) 

2 
(100) 

3 
(010) 

4 
(110) 

1x1 = State Probability 

key:E1 = A N A ,  E2 = COM, E3 = ADV 
* State 1 (000) No Events have occurred 

2 (100) Only ANA has occurred 
3 (010) Only COM has occurred 
4 (110) Both ANA and COM has occurred 
5 (111) All events have occurred 
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- .2692 .5154 ,2154 0 0 
0 .95 0 .05 0 

0 .6 .4 0 
0 0 0 .5  .5 

- 

p 1 9 9 3 , l  - - 0  

- 0 0 0 0 1  - 

71 

The transition probabilities shown in Figure 1 vary with time. The 
figure shows both the transitions and the dynamic probabilities of being 
in a particular State, given a starting probability distribution over the 
states of Plgg3 = (.26, .68, .04, .02,0). The figure summarizes a wealth of 
information. For instance, note that Event 1 occurs by 1994, or never 
since there are no transitions from State 1 to State 2 or from State 3 to 
State 4 after 1994. The probabilities of States 2 and 4 limit the eventual 
probability that State 5 can attain to a maximum probability of .37 as 
noted in the figure. The probability of State 2 diminishes between 1994 
and 1997 as the probability of transition to State 4 (ANA and COM 
achieved) increases. This latter State then limits the possibilities for State 
5 thereafter. Similarly Event 2 must occur by 1997 (i.e, P1:3 and P2:4  

are zero after 1997), so the population of State 4 declines after that year. 
Also, States 1, 2, and 3, do not change after 1997. The whole profile is 
stagnant from 2002. To the extent that one believes the model, it would 
argue against concentrating R&D resources on achieving Event 3 unless 
Event 2 can again become possible. 

The state probabilities can be computed in the following way, using 
the data from Figure 1. For the transition from 1993 to 1994 we observe 
that 

The 1994 probabilities are then computed using the formula, plgg4 = 
p1993P1993,1 (the two probability vectors plgg3 and plgg4 are row rectors). 
Each period can be computed from the last in this way. Several period 
transitions can be computed using Equation (6): for instance, P199313 = 
p1993 , lp1994 ,1p1995 ,1  

The impacts of resource allocation on the probabilities of occurrence 
of the 3 events can be further examined. As resources decrease, the di- 
agonal probabilities, p:;:, increase at the relative expense of the super- 
diagonal terms, pi;: for j + i; the reverse occurs as resources increase. 
Consider the evolution of plgg6 if the resources were reduced. Then the 
prospects for COM and ADV in 1996 would be reduced accordingly. Most 
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72 Markov Formulation of Cross-Impact Analysis 

importantly, this impact would reduce the State 4 probability - the base 
for 1997 and later year chances of attaining State 5. 

This does not exhaust the analysis possibilities using the Markov 
formulation. We can examine the last column of the transition matrix 
P199319, to obtain the probabilities of attaining ADV by 2002 from the 
intitial states (Matrix not given here). These probabilities, (.2041, .4184, 
,3377, .9221,1.) indicate that if we are in State 1 in 1993, we have a 
20.41% chance of reaching ADV by 2002; our greatest chance occurs if 
we are in State 4 ,  with a 92.21% chance (of course, if we start with ADV 
we are certain to be there in 2002). Averaged over the distribution of 
starting states we get 37% chance of success as noted on Table 1. 

Provided that we make it to ADV, how long will it take? This is a 
question of the first passage time, from starting State i to State 5. This 
can be computed using a generalization of Equation (7) for non-constant 
transition probabilities. 

n-1 

k = l  

The calculation is simplified since p5:5 f 1. The first passage distribution 
is obtained through application of Equation (8) and normalization by the 
conditional probability of actually attaining ADV. These distributions are 
summarized in Table 3. The mean first passage times can be computed 
from these values: (6.7,6.4, 4.2, 2.5) (years). Weighted over the starting 
State distribution yields an expected first passage time of 6.3  years, since 
the probabilities are concentrated initially on States 1 and 2.  Clearly 
there are many possibilities for analysis when the Markov model is used. 

Contrast the Markov analysis with the traditional C-I. The latter pro- 
vided revised cumulative probabilities for the conclusion of the period - 
2002 (i.e., marginal probabilities for ANA, COM, and ADV). Traditional 
C-I can approximate time steps (Enzer and Leschinsky, 1986), but causal- 
ity implied is not explicitly modeled. Consideration of the C-I matrices 
would also highlight the extreme dependence of Event 3 (ADV) on the 
other 2 events. In contrast, the Markov approach provides information on 
the process throughout the time period. This could be helpful in timing 
the allocation of scarce resources for the years wherein they might have 
greatest impact. For instance, one might probe whether increased work 
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1994 
1995 
1996 
1997 
1998 
1999 
2000 
200 1 
2002 

0. 0. 0. ,5442 
0. .0394 .3909 .1789 
.0694 ,0795 .1700 .0778 
.0854 .840 .0720 .0329 
,1196 .1128 .0520 .0138 
,1512 .1426 .0657 ,0300 
.1814 ,1710 .0788 .0307 
.1814 .1710 .0788 .0307 
.2116 ,1996 .0992 .0421 

on COM in the early years (Table 1) could speed up its development rel- 
ative to ANA. Likewise, one might examine further the need for sizable 
investment in ADV prior to the early 1990s. 

CONCLUSIONS 

Cross-impact analysis can be expressed by using Markov processes: 
with extensions, both trends, and events can be incorporated in the anal- 
ysis. Trends can only be represented easily when they are taken over 
a finite range. The formalism is fairly straightforward. It requires the 
estimation of state transition probabilities from one time interval to the 
next. The selection of the actual time interval is arbitrary, depending on 
the needs of the analysis. While this approach offers a number of im- 
provements over the usual C-I analysis, it can require a large amount of 
information to construct the transition matrices, especially where trends 
are involved. When the full transition matrix is specified (most practical 
when the transition probabilities are constant), Monte Carlo simulation 
is not needed. Markov C-I offers great potential for richer modeling of 
technological change and impact processes. 
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